Atmospheric Mercury Depletion Events (AMDEs) in Polar Regions During Arctic Spring

Katrine Aspmo
Torunn Berg
Norwegian Institute for Air Research

Grethe Wibetoe
University of Oslo, Dept. of Chemistry

June 16, 2004
This talk compares theory with measurements and gives the environmental implications of AMDEs.
A theory exists for the cycling of mercury during depletion events in the Arctic springtime.

[Sunlight, Halogens, O$_3$…] → Hg° ↔ HgII
| RGM | PM |

[Snowpack] → HgII ↔ Me-Hg

[Bacteria, …]

[Lindberg et al., 2002; Steffen et al., 2003]
Springtime measurements from Zeppelin mountain agree well with this theory
Springtime measurements from Zeppelin mountain agree well with this theory.
Springtime measurements from Zeppelin mountain agree well with this theory

GEM: Gaseous Elemental Mercury

Particulate Mercury (PM)

Reactive Gaseous Mercury (RGM)
Springtime measurements from Zeppelin mountain agree well with this theory.

GEM: Gaseous Elemental Mercury

Particulate Mercury (PM)

Reactive Gaseous Mercury (RGM)
Springtime measurements from Zeppelin mountain agree well with this theory.

GEM: Gaseous Elemental Mercury

Reactive Gaseous Mercury (RGM)

Particulate Mercury (PM)
Global warming may increase the extent of AMDEs

Arctic biota show highly elevated Hg levels and are still increasing

Hg in polar bears

[Lindberg et al., 2002]
In summary, AMDEs lead to increased Hg input to Arctic ecosystems

A significant fraction of the deposited Hg is bio-available

Deposited Hg can be re-emitted

AMDEs can increase as polar climate warms

Questions?